Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Oncol ; 63: 125-136, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587062

RESUMO

BACKGROUND AND PURPOSE: Tamoxifen remains an important adjuvant treatment in premenopausal patients with hormone receptor-positive breast cancer. Thus, determination of hormone receptors is important. Here, we compare cytosol-based methods, immunohistochemistry (IHC), and gene expression (GEX) analysis for determining hormone receptor status in premenopausal breast cancer patients from a randomised tamoxifen trial, to evaluate their performance in identifying patients that benefit from tamoxifen. PATIENTS AND METHODS: Premenopausal patients (n=564) were randomised to 2 years of tamoxifen or no systemic treatment. Estrogen receptor (ER) and progesterone receptor (PR) status by protein expression measured by cytosol-based methods and IHC, and mRNA by GEX analysis were compared in 313 patients with available data from all methods. Kaplan Meier estimates and Cox regression were used to evaluate the treatment-predictive value for recurrence-free interval (RFi) and overall survival (OS). Median follow-up for event-free patients was 26 (RFi) and 33 (OS) years. RESULTS: The mRNA data of ESR1 and PGR distributed bimodally, patterns confirmed in an independent cohort. Kappa-values between all methods were 0.76 and 0.79 for ER and PR, respectively. Tamoxifen improved RFi in patients with ER-positive (ER+) or PR-positive (PR+) tumours (Hazard Ratio [HR] and 95% confidence interval [CI]), cytosol-ER+ 0.53 [0.36-0.79]; IHC-ER+ 0.55 [0.38-0.79]; GEX-ER+ 0.54 [0.37-0.77]; cytosol-PR+ 0.49 [0.34-0.72]; IHC-PR+ 0.58 [0.40-0.85]; GEX-PR+ 0.55 [0.38-0.80]). Results were similar for OS. INTERPRETATION: These methods can all identify patients that benefit from 2 years of tamoxifen with equal performance, indicating that GEX data might be used to guide adjuvant tamoxifen therapy.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , RNA Mensageiro/genética , Quimioterapia Adjuvante , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Hormônios/uso terapêutico , Receptores de Progesterona/metabolismo , Resultado do Tratamento
2.
Arch Biochem Biophys ; 752: 109882, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211639

RESUMO

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the ß1-adrenergic receptor (ß1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. We hypothesized that this inhibition is a consequence of a plasma membrane complex of these receptors. Using co-immunoprecipitation, confocal immunofluorescence microscopy, and bioluminescence resonance energy transfer (BRET), we show that GPR30 and ß1AR reside in close proximity in a plasma membrane complex when transiently expressed in HEK293. Deleting the GPR30 C-terminal PDZ motif (-SSAV) does not interfere with the receptor complex, indicating that the complex is not PDZ-dependent. MCF7 breast cancer cells express GPR30, ß1AR, MAGUKs, and AKAP5 in the plasma membrane, and co-immunoprecipitation revealed that these proteins exist in close proximity also under native conditions. Furthermore, expression of GPR30 in MCF7 cells constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. AKAP5 also inhibits ß1AR-mediated cAMP production, which is not additive with GPR30-promoted inhibition. These results argue that GPR30 and ß1AR form a PDZ-independent complex in MCF7 cells through which GPR30 constitutively and PDZ-dependently inhibits ß1AR signaling via receptor interaction with MAGUKs and AKAP5.


Assuntos
Neoplasias da Mama , Proteínas Quinases Dependentes de AMP Cíclico , Feminino , Humanos , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanilato Quinases , Células HEK293 , Células MCF-7 , Receptores Adrenérgicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Breast Cancer Res ; 25(1): 110, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773134

RESUMO

BACKGROUND: Gene expression (GEX) signatures in breast cancer provide prognostic information, but little is known about their predictive value for tamoxifen treatment. We examined the tamoxifen-predictive value and prognostic effects of different GEX signatures in premenopausal women with early breast cancer. METHODS: RNA from formalin-fixed paraffin-embedded tumor tissue from premenopausal women randomized between two years of tamoxifen treatment and no systemic treatment was extracted and successfully subjected to GEX profiling (n = 437, NanoString Breast Cancer 360™ panel). The median follow-up periods for a recurrence-free interval (RFi) and overall survival (OS) were 28 and 33 years, respectively. Associations between GEX signatures and tamoxifen effect were assessed in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+ /HER2-) tumors using Kaplan-Meier estimates and Cox regression. The prognostic effects of GEX signatures were studied in the entire cohort. False discovery rate adjustments (q-values) were applied to account for multiple hypothesis testing. RESULTS: In patients with ER+/HER2- tumors, FOXA1 expression below the median was associated with an improved effect of tamoxifen after 10 years with regard to RFi (hazard ratio [HR]FOXA1(high) = 1.04, 95% CI = 0.61-1.76, HRFOXA1(low) = 0.30, 95% CI = 0.14-0.67, qinteraction = 0.0013), and a resembling trend was observed for AR (HRAR(high) = 1.15, 95% CI = 0.60-2.20, HRAR(low) = 0.42, 95% CI = 0.24-0.75, qinteraction = 0.87). Similar patterns were observed for OS. Tamoxifen was in the same subgroup most beneficial for RFi in patients with low ESR1 expression (HRRFi ESR1(high) = 0.76, 95% CI = 0.43-1.35, HRRFi, ESR1(low) = 0.56, 95% CI = 0.29-1.06, qinteraction = 0.37). Irrespective of molecular subtype, higher levels of ESR1, Mast cells, and PGR on a continuous scale were correlated with improved 10 years RFi (HRESR1 = 0.80, 95% CI = 0.69-0.92, q = 0.005; HRMast cells = 0.74, 95% CI = 0.65-0.85, q < 0.0001; and HRPGR = 0.78, 95% CI = 0.68-0.89, q = 0.002). For BC proliferation and Hypoxia, higher scores associated with worse outcomes (HRBCproliferation = 1.54, 95% CI = 1.33-1.79, q < 0.0001; HRHypoxia = 1.38, 95% CI = 1.20-1.58, q < 0.0001). The results were similar for OS. CONCLUSIONS: Expression of FOXA1 is a promising predictive biomarker for tamoxifen effect in ER+/HER2- premenopausal breast cancer. In addition, each of the signatures BC proliferation, Hypoxia, Mast cells, and the GEX of AR, ESR1, and PGR had prognostic value, also after adjusting for established prognostic factors. Trial registration This trial was retrospectively registered in the ISRCTN database the 6th of December 2019, trial ID: https://clinicaltrials.gov/ct2/show/ISRCTN12474687 .


Assuntos
Neoplasias da Mama , Tamoxifeno , Feminino , Humanos , Tamoxifeno/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transcriptoma , Quimioterapia Adjuvante/métodos , Prognóstico , Antineoplásicos Hormonais/uso terapêutico
4.
Front Mol Biosci ; 10: 1343979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38449790

RESUMO

Background: Metastatic breast cancer (MBC) is the main cause of breast cancer-related death. The outcome of MBC varies, and there is a lack of biomarkers to aid in prognostication. The primary aim of this study was to evaluate the prognostic value of gene expression (GEX) signatures in the primary tumor (PT) and distant metastasis (DM) for progression-free survival (PFS) and overall survival (OS). The secondary aim was to describe GEX changes through MBC evolution and to identify MBC subtypes. Methods: RNA was extracted from the PT, lymph node metastasis (LNM), and DM from MBC patients in a prospective observational study (n = 142; CTC-MBC NCT01322893) and was subjected to GEX analysis retrospectively using the NanoString Breast Cancer 360™ panel. 31 continuous GEX variables in DMs and PTs were analyzed for PFS and OS by Cox regression analysis and Kaplan-Meier estimates. Multivariable Cox regressions were adjusted for number of DM sites and CTCs, visceral metastasis, ECOG status, age at MBC diagnosis and, in additional analyses, PAM50 subtype. Differential GEX analyses and Euclidean distances were used to describe subgroup differences and visualize within-patient heterogeneity. Results: Compared to DM GEX, GEX of the PT was at least equally useful for predicting MBC outcome. The strongest marker for a favorable PFS, both when expressed in the PT and the DM was AR, even after adjustment for prognostic markers including PAM50. GEX signatures related to hormone responsiveness, including ESR1, FOXA1, PGR, and AR were favorable prognostic markers, and the p53 signature was unfavorable for PFS when expressed in PT or DM. The previously published PAM50MET signature was prognostic for both PFS and OS. We established five distinct DM GEX profiles where two associated with liver and bone metastases, respectively. Finally, we identified four DM GEX profiles able to identify MBCs with poor OS in this cohort. Conclusion: GEX of both DM and PT are useful in MBC prognostication. GEX of AR adds prognostic information for MBC. Our descriptive analyses illuminate the biological differences between MBCs in relation to outcome and metastatic site.

5.
Br J Cancer ; 126(8): 1145-1156, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35140341

RESUMO

BACKGROUND: Breast-conserving surgery followed by radiotherapy is part of standard treatment for early-stage breast cancer. Hypoxia is common in cancer and may affect the benefit of radiotherapy. Cells adapt to hypoxic stress largely via the transcriptional activity of hypoxia-inducible factor (HIF)-1α. Here, we aim to determine whether tumour HIF-1α-positivity and hypoxic gene-expression signatures associated with the benefit of radiotherapy, and outcome. METHODS: Tumour HIF-1α-status and expression of hypoxic gene signatures were retrospectively analysed in a clinical trial where 1178 women with primary T1-2N0M0 breast cancer were randomised to receive postoperative radiotherapy or not and followed 15 years for recurrence and 20 years for breast cancer death. RESULTS: The benefit from radiotherapy was similar in patients with HIF-1α-positive and -negative primary tumours. Both ipsilateral and any breast cancer recurrence were more frequent in women with HIF-1α-positive primary tumours (hazard ratio, HR0-5 yrs1.9 [1.3-2.9], p = 0.003 and HR0-5 yrs = 2.0 [1.5-2.8], p < 0.0001). Tumour HIF-1α-positivity is also associated with increased breast cancer death (HR0-10 years 1.9 [1.2-2.9], p = 0.004). Ten of the 11 investigated hypoxic gene signatures correlated positively to HIF-1α-positivity, and 5 to increased rate/risk of recurrence. CONCLUSIONS: The benefit of postoperative radiotherapy persisted in patients with hypoxic primary tumours. Patients with hypoxic primary breast tumours had an increased risk of recurrence and breast cancer death.


Assuntos
Neoplasias da Mama , Mastectomia Segmentar , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Feminino , Seguimentos , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Recidiva Local de Neoplasia/radioterapia , Prognóstico , Estudos Retrospectivos
6.
Mol Pharmacol ; 100(3): 271-282, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34330822

RESUMO

G protein-coupled receptor 30 (GPR30) is a membrane receptor reported to bind 17ß-estradiol (E2) and mediate rapid nongenomic estrogen responses, hence also named G protein-coupled estrogen receptor. G-1 is a proposed GPR30-specific agonist that has been used to implicate the receptor in several pathophysiological events. However, controversy surrounds the role of GPR30 in G-1 and E2 responses. We investigated GPR30 activity in the absence and presence of G-1 and E2 in several eukaryotic systems ex vivo and in vitro in the absence and presence of the receptor. Ex vivo activity was addressed using the caudal artery from wild-type (WT) and GPR30 knockout (KO) mice, and in vitro activity was addressed using a HeLa cell line stably expressing a synthetic multifunctional promoter (nuclear factor κB, signal transducer and activator of transcription, activator protein 1)-luciferase construct (HFF11 cells) and a human GPR30-inducible T-REx system (T-REx HFF11 cells), HFF11 and human embryonic kidney 293 cells transiently expressing WT GPR30 and GPR30 lacking the C-terminal PDZ (postsynaptic density-95/discs-large /zonula occludens-1 homology) motif SSAV, and yeast Saccharomyces cerevisiae transformed to express GPR30. WT and KO arteries exhibited similar contractile responses to 60 mM KCl and 0.3 µM cirazoline, and G-1 relaxed both arteries with the same potency and efficacy. Furthermore, expression of GPR30 did not introduce any responses to 1 µM G-1 and 0.1 µM E2 in vitro. On the other hand, receptor expression caused considerable ligand-independent activity in vitro, which was receptor PDZ motif-dependent in mammalian cells. We conclude from these results that GPR30 exhibits ligand-independent activity in vitro but no G-1- or E2-stimulated activity in any of the systems used. SIGNIFICANCE STATEMENT: Much controversy surrounds 17ß-estradiol (E2) and G-1 as G protein-coupled receptor 30 (GPR30) agonists. We used several recombinant eukaryotic systems ex vivo and in vitro with and without GPR30 expression to address the role of this receptor in responses to these proposed agonists. Our results show that GPR30 exhibits considerable ligand-independent activity in vitro but no G-1- or E2-stimulated activity in any of the systems used. Thus, classifying GPR30 as an estrogen receptor and G-1 as a specific GPR30 agonist is unfounded.


Assuntos
Ciclopentanos/farmacologia , Estradiol/farmacologia , Quinolinas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Artérias/efeitos dos fármacos , Linhagem Celular , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Domínios PDZ/genética , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética
7.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065716

RESUMO

Chronic respiratory diseases are often characterized by impaired epithelial function and remodeling. Mast cells (MCs) are known to home into the epithelium in respiratory diseases, but the MC-epithelial interactions remain less understood. Therefore, this study aimed to investigate the effect of MC proteases on bronchial epithelial morphology and function. Bronchial epithelial cells were stimulated with MC tryptase and/or chymase. Morphology and epithelial function were performed using cell tracking analysis and holographic live-cell imaging. Samples were also analyzed for motility-associated gene expression. Immunocytochemistry was performed to compare cytoskeletal arrangement. Stimulated cells showed strong alterations on gene, protein and functional levels in several parameters important for maintaining epithelial function. The most significant increases were found in cell motility, cellular speed and cell elongation compared to non-stimulated cells. Also, cell morphology was significantly altered in chymase treated compared to non-stimulated cells. In the current study, we show that MC proteases can induce cell migration and morphological and proliferative alterations in epithelial cells. Thus, our data imply that MC release of proteases may play a critical role in airway epithelial remodeling and disruption of epithelial function.


Assuntos
Brônquios/citologia , Brônquios/metabolismo , Quimases/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mastócitos/enzimologia , Triptases/metabolismo , Divisão Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Citoesqueleto/metabolismo , Holografia , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Análise Serial de Tecidos
8.
PLoS One ; 15(4): e0231786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302351

RESUMO

BACKGROUND: G protein-coupled estrogen receptor (GPER), or G protein-coupled receptor 30 (GPR30), is reported to mediate non-genomic estrogen signaling. GPR30 associates with breast cancer (BC) outcome and may contribute to tamoxifen resistance. We investigated the expression and prognostic significance of GPR30 in metachronous contralateral breast cancer (CBC) as a model of tamoxifen resistance. METHODS: Total GPR30 expression (GPR30TOT) and plasma membrane-localized GPR30 expression (GPR30PM) were analyzed by immunohistochemistry in primary (BC1; nBC1 = 559) and contralateral BC (BC2; nBC2 = 595), and in lymph node metastases (LGL; nLGL1 = 213; nLGL2 = 196). Death from BC (BCD), including BC death or death after documented distant metastasis, was used as primary end-point. RESULTS: GPR30PM in BC2 and LGL2 were associated with increased risk of BCD (HRBC2 = 1.7, p = 0.03; HRLGL2 = 2.0; p = 0.02). In BC1 and BC2, GPR30PM associated with estrogen receptor (ER)-negativity (pBC1<0.0001; pBC2<0.0001) and progesterone receptor (PR)-negativity (pBC1 = 0.0007; pBC2<0.0001). The highest GPR30TOT and GPR30PM were observed in triple-negative BC. GPR30PM associated with high Ki67 staining in BC1 (p<0.0001) and BC2 (p<0.0001). GPR30TOT in BC2 did not associate with tamoxifen treatment for BC1. However, BC2 that were diagnosed during tamoxifen treatment were more likely to express GPR30PM than BC2 diagnosed after treatment completion (p = 0.01). Furthermore, a trend was observed that patients with GPR30PM in an ER-positive BC2 had greater benefit from tamoxifen treatment. CONCLUSION: PM-localized GPR30 staining is associated with increased risk of BC death when expressed in BC2 and LGL2. Additionally, PM-localized GPR30 correlates with prognostic markers of worse outcome, such as high Ki67 and a triple-negative subtype. Therefore, PM-localized GPR30 may be an interesting new target for therapeutic exploitation. We found no clear evidence that total GPR30 expression is affected by tamoxifen exposure during development of metachronous CBC, or that GPR30 contributes to tamoxifen resistance.


Assuntos
Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Segunda Neoplasia Primária/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Células HeLa , Humanos , Incidência , Células MCF-7 , Pessoa de Meia-Idade , Segunda Neoplasia Primária/tratamento farmacológico , Segunda Neoplasia Primária/patologia , Prognóstico , Fatores de Risco , Tamoxifeno/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...